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Construction of Rational Maps on the Projective Line with Given

Dynamical Structure

Midshipman Ian Shaw, USN

Advisors: Professor Amy Ksir, Lieutenant Brian Stout, USN

United States Naval Academy

May 3, 2016

Abstract

In this paper we prove that we can construct a unique quadratic rational map on the

projective line if given three fixed points and a pair of period two points. There are restric-

tions on the given points related to maintaining distinct existence of the fixed and periodic

points.

We construct the quadratic rational map by focusing on the case of fixed points at

0, 1,∞. In this space we use a Gröbner basis to solve a system of equations formed by the

coefficients of fixed point polynomials. The solution to this system is the set of coefficients of

the quadratic rational map. Using a Möbius transformation, we can send any three distinct,

desired fixed points to 0, 1,∞, construct the map, and use an inverse Möbius transformation

to bring the map to the original fixed points.

As an application we discuss constructing certain elliptic curves via Lattès maps.

Keywords: Arithmetic Dynamics, Periodic Points, Rational Map
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1. Introduction

The is a paper in arithmetic dynamics, a relatively young field at the intersection of the

older studies of number theory and dynamical systems.

Dynamical systems are mathematical models for systems that change over time in a

deterministic way. The simplest way to model such a system is with a set S of possible

states of the system, and a function φ : S → S describing what happens to each state after

one unit of time. For example, S might represent the possible positions and velocities of a

planet in the solar system; if S represents the position and velocity today, φ(S) would give

the position and velocity tomorrow. The sequence of values S, φ(S), φ(φ(S)), φ(φ(φ(S))) is

called (inspired by this example) the orbit of S. Here the discrete units of time correspond

to days.

A natural question to ask is what the long term behavior of the system will be. For some

initial states, the planet will stay near the sun, and for others it will fly off into space and

never return. Thus the principal goal of dynamics is to “classify the points α in the set S

according to the behavior of their orbits Oφ(α).” [3] We will use this goal in order to frame

our investigation.

The set S in which we will work is not the set of positions of planets but rather the set of

rational numbers. The orbits Oφ(α) we will be using are those forward orbits of a rational

number α under repeated evaluation by a rational map.

Many advances in dynamical systems have been made since computers became available.

The exponentially increased computational power and access to larger data sets rocketed

the field forward, allowing mathematicians to observe phenomena on the smallest scale and

over many iterations. The popular term, “butterfly effect”, describes the fact that for many

systems, a very small change in the initial state can be magnified to cause huge changes

in long term behavior. The name was coined by Edward Lorenz, and comes from the idea

that the flap of a butterfly’s wings could change the path of a hurricane several weeks later.

Lorenz pioneered the study of such systems, often called chaos theory, in the 1960’s. Another

popular advancement in dynamical systems spurred by the classification of points by their

orbits was the development of beautiful and fascinating sets called fractals.

In the past few decades two pillars of theoretical mathematics, number theory and dy-
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namical systems, have come together to create a new field: arithmetic dynamics. Relative

to the study of mathematics as a whole, arithmetic dynamics is a frontier begging to be

explored. Here we bring together a classical question from dynamical systems and the tools

of number theory to take steps into this frontier. Can a function be developed in which a

designated set of points has a designated behavior?

Specifically we deal with rational maps as the function, rational numbers as the points,

and prime periodicity as the designated behavior. This project will investigate the uniqueness

and existence of a rational map for a set of points of period 2, those points that reappear

every other iteration of the map.

The central question of this paper is: Can we construct a quadratic rational map if given

three fixed points and a pair of period two points? We have found the answer to be yes,

with some restrictions on the fixed points and period two points. This question is motivated

by a connection to the torsion points of elliptic curves.

As elliptic curve cryptography becomes more applicable in the information age, improving

the central cryptosystem algorithm is of increasing importance. Part of this cryptosystem

is being able to construct elliptic curves with certain characteristics; among these being

specified torsion points. Joseph Silverman showed that there is a connection between the

torsion points of an elliptic curve and the pre-periodic points of a Lattès map, a special type

of rational map. We hope that we can construct a Lattès map with prescribed pre-periodic

points and then determine elliptic curves with desired torsion points.

Thus we are interested in constructing rational maps with given pre-periodic points. This

paper focuses on the case of quadratic rational maps in hopes of progressing to the more

complex case of Lattès maps, which are maps of degree four or higher.

There are further related questions that have been asked by other researchers in this com-

munity. For example, consider points for which the first derivative of the map is zero, known

as critical points. It is now known, thanks to a collection of mathematicians publishing in

2013 the paper “On the Classification of Critically Fixed Rational Maps,” the classifications

of rational maps for which all critical points are fixed. For example, for all degrees three or

higher there exists a rational map such that all but two of the fixed points are critical[1].

Additionally, an active area of current research includes “post-critically finite maps” where
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all critical points are preperiodic. That is to say, the research into categories of points on

rational maps has been, and continues to be, investigated

The structure of this paper is as follows. In Section 2 we will elaborate upon our terms

and notation. In Section 3 we will prove,by construction, the existence of quadratic rational

maps with almost any specified two-cycle and fixed points at 0, 1,∞ by construction. In

Section 4 we prove uniqueness of the quadratic rational map. In Section 5 we prove how to

extend our conclusions for quadratic rational maps with fixed points at 0, 1,∞ to quadratic

rational maps with any distinct fixed points and two-cycle. In Section 6 we discuss how

these results relate to the bijection of the moduli 2-space of quadratic rational maps to the

affine space. In Section 7 we explain the conclusions of the theorems through an example

of a quadratic rational map. Finally in Section 8 we discuss the next steps in this research

toward the goal of constructing elliptic curves with specified torsion points.
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2. Background

The space we work in for this paper is known as the projective line.

Definition 2.1. The projective line, denoted by P1, is the rational numbers Q adjoined with

the point at infinity ∞.

P1 = Q ∪ {∞}

2.1. Rational Maps

Definition 2.2. A rational map is the quotient of two polynomials a(x), b(x).

φ(x) =
a(x)

b(x)
=
anx

n + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xn−1 + · · ·+ b1x+ b0

Definition 2.3. The degree of a rational map is the degree of the highest order term in the

numerator or denominator.

In this paper, we are mostly concerned with maps of degree 2, also known as quadratic

maps. These maps, unlike maps of degree one, have interesting and non-trivial iterates. For

example, if φ is of degree 2, then φ ◦φ = φ2 is a degree 4 map. This opens the possibility for

the conclusions we draw for quadratic maps to be extended to higher orders. The general

form of a quadratic rational map is:

φ(x) =
a2x

2 + a1x+ a0
b2x2 + b1x+ b0

(1)

An example of a quadratic rational map is:

g(x) =
x2 − 1

x2 − 2x+ 1
.

2.2. Resultant

Not only are we interested in quadratic maps, but we do not want the rational maps to

degenerate and become of smaller degree. To ensure the map maintains its degree we use a

well known mathematical tool, the resultant of a rational map.

Theorem 1. Let

a(x) = anx
n + an−1xn−1 + · · ·+ a1x+ a0
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b(x) = bmx
m + bm−1xm−1 + · · ·+ b1x+ b0

be polynomials of degrees n and m with coefficients in a field K. There exists a polynomial

Res(a, b) = Res(an, . . . , a0, bn, . . . , bm) ∈ Z[an, . . . , a0, bn, . . . , bm]

in the coefficients of a(x) and b(x), called the resultant of a(x) and b(x) with the following

properties:

(a) Res (a, b)= 0 if and only if a(x) and b(x) have a common zero in P1

(b) The resultant is equal to the (m+ n)× (m+ n) determinant:

Res(a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 . . . a0

an an−1 . . . a0
. . . . . .

an an−1 . . . a0

bm bm−1 . . . . . . b0

bm bm−1 . . . b0
. . . . . .

bm bm−1 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof. See [3].

This is not well defined. Suppose α is a rational number and d is an integer, then

Res(αφ) = Res(φ)αd.

Although it is not well defined, the vanishing of this polynomial is well defined. Suppose

Res(φ) = 0, then Res(αφ) = 0,

In this paper, if φ(x) = a(x)
b(x)

is a quadratic rational map, then Res(φ) = Res(a, b).

Therefore, the resultant may be used to determine whether the numerator and denominator

have a common factor, causing φ to degenerate. In the quadratic case the resultant is

Res(a, b) = Res(φ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a2 a1 a0 0

0 a2 a1 a0

b2 b1 b0 0

0 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Returning back to the example of g:

Res(g) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −1 0

0 1 0 −1
1 −2 1 0

0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Thus we see g(x) must degenerate from a quadratic. Taking another look :

g(x) =
x2 − 1

x2 − 2x+ 1
=

(x− 1)(x+ 1)

(x− 1)2
=

(x+ 1)

(x− 1)

we see that g(x) is in fact a linear map.

Consider another map:

h(x) =
x2 + 1

x2 − 2x+ 1
.

Res(h) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0

0 1 0 1

1 −2 1 0

0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 4

We see that h(x) does not degenerate, and is in fact quadratic.

2.3. Periodic Points

Now let’s take a look at interesting points in this space. Consider an α ∈ P1(Q).

Definition 2.4. If there is a n ∈ Z+ such that φn(α) = α, then α has period n, also is called

a periodic point.

Definition 2.5. If φ(α) = α, then α is a point of period one, also known as a fixed point.

If φ2(α) = α, then α is a point of period two. Furthermore, φ(α) is a point of period two.

φ2(φ(α)) = φ(φ(φ(α))) = φ(φ2(α)) = φ(α)

Then α, φ(α) are said to form a two-cycle as the maps send the points to each other; α �
φ(α), and more over α, φ(α) are distinct.

One of the standard questions in dynamical systems is to find the fixed points and periodic

points of the system. The number of possible periodic points of a given period depends on

the degree of the map. We can see this by studying the fixed point polynomial.
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Definition 2.6. If x is a fixed point, then φ(x) = a(x)
b(x)

= x. The fixed point polynomial of φ

is Fixφ(x) = a(x)− xb(x).

Lemma 2. If the point α is a fixed point of φ, then Fixφ(α) = 0

Proof. Let α be a fixed point of φ.

φ(α) =
a(α)

b(α)
= α

By simple distribution,

0 = a(α)− αb(α)

Thus Fixφ(α) = 0.

Consider the fixed point polynomial of the general quadratic rational map. Let x be a

general fixed point of φ.

φ(x) =
a2x

2 + a1x+ a0
b2x2 + b1x+ b0

Let fn denote a single fixed point.

0 = φ(x)− x = a(x)− xb(x) = a2x
2 + a1x+ a0 − b2x

3 + b2x+ b1 = (x− f1)(x− f2)(x− f3)

As you can see, for a quadratic rational map there are at most three fixed points.

Consider the same φ. The second iterate of φ will be a quartic rational map

φ2(x) = φ(φ(x)) =
A(x)

B(x)

where A(x), B(x) are degree 4 polynomials in terms of the coefficients of φ : a2, a1, a0, b2, b1, b0

This new map will maintain the fixed points f1, f2, and f3. Let pn be period two points of

φ. For φ2, period two points of φ will be become fixed points.

φ2(f1) = φ(φ(f1)) = φ(f1) = f1

φ2(pn) = pn

The fixed point polynomial will be a degree 5 polynomial.

0 = φ2(x)− x = A(x)− xB(x) = (x− f1)(x− f2)(x− f3)(x− p1)(x− p2)
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Since degree 5, there are five roots. Since three are already fixed points, we see that a

quadratic rational map can have at most two period-two points. Note that since by definition

φ(p1) is a period 2 point of φ, that p2 = φ(p1). For this paper, we will be concerned with

constructing quadratic rational maps based off conditions of a given set of three fixed points

and two period-two points.

2.4. Simplifying the General Quadratic Rational Map

The goal of this paper is to construct a unique quadratic rational map. This may be

understood as finding values for the coefficients a2, a1, a0, b2, b1, b0. These values are what

narrow the scope of the general form of the quadratic rational map to adopt the specific

fixed points and period two points we desire.

One way we simplify our calculations is by focusing on maps with fixed points 0, 1,∞.

This is mathematically viable as it is known that for any distinct three points, there is a

Möbius transformation sending these points to any other set of three distinct points [3].

Therefore we may work under the convenient conditions of fixed points of the map as 0, 1,

∞ with the understanding that our conclusions may be transformed to any three distinct

fixed points f1, f2, f3.

Consider a quadratic rational map with fixed points 0,1,∞. Since 0 is a fixed point, then

a0 must equal to 0.
a2 · 02 + a1 · 0 + a0
b2 · 02 + b1 · 0 + b0

=
a0
b0

= 0

Since ∞ is a fixed point, then b2 must be equal to 0.

a2 · ∞2 + a1 · ∞+ a0
b2 · ∞2 + b1 · ∞+ b0

=
a2
b2

=∞

This results in a quadratic rational map with only four unknown coefficients, as opposed to

the six we began with.
a2x

2 + a1x+ a0
b2x2 + b1x+ b0

⇒ a2x
2 + a1x

b1x+ b0

Since 1 is a fixed point we develop a condition upon the remaining coefficients.

φ(1) = 1 =
a2 + a1
b1 + b0

a2 + a1 = b1 + b0
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Also note that if a2 = 0 or b0 = 0 the map will become linear. Therefore if a quadratic

rational map φ has fixed points 0,1, ∞, then

φ(x) =
a2x

2 + a1x

b1x+ b0
such that a2, b0 �= 0 and a2 + a1 = b1 + b0.
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3. Existence by Construction

3.1. Existence Theorem

Theorem 3. Let p, q be distinct rational numbers. There exists a quadratic rational map

with fixed points 0,1, ∞ and p, q as a distinct two cycle if and only if p, q satisfy the following

conditions:

{p+ q �= 0, p+ q − 2 �= 0, 2pq − p− q �= 0} (*)

Proof. First we will prove the forward direction with a provided quadratic map using algebra

to show the fixed points and two-cycle hold for the map, then using the resultant to show

that the map is quadratic and does not degenerate. The reverse direction will use a proof

by contradiction to show that if any of the conditions are not met, then the quadratic map

does not exist.

Suppose p, q satisfy the conditions of the theorem. Consider the map:

φ(x) =
(2pq − p− q)x2 − (p2q + pq2 − p2 − q2)x

(p2 + q2 − p− q)x− pq(p+ q − 2)

The point 0 is a fixed point by inspection. The point at ∞ is a fixed point since when the

degree of a map is greater in the numerator than the denominator, then φ(∞) = ∞. The

point 1 is a fixed point as shown below.

φ(1) =
(2pq − p− q)− (p2q + pq2 − p2 − q2)

(p2 + q2 − p− q)− pq(p+ q − 2)
=
−1 · (p− 1)(q − 1)(p+ q)

−1 · (p− 1)(q − 1)(p+ q)
= 1

The map at p and q forms a two cycle.

φ(p) =
(2pq − p− q)p2 − (p2q + pq2 − p2 − q2)p

(p2 + q2 − p− q)p− pq(p+ q − 2)
=
q(−p+ q) · p · (p− 1)

(−p+ q) · p · (p− 1)
= q

φ(q) =
(2pq − p− q)q2 − (p2q + pq2 − p2 − q2)q

(p2 + q2 − p− q)q − pq(p+ q − 2)
=
p(p− q) · q · (q − 1)

(p− q) · q · (q − 1)
= p

We will use the resultant of φ(x) to prove it is quadratic.

Res( φ(x) ) =

∣∣∣∣∣∣∣∣∣∣∣∣

(2pq − p− q) (p2q + pq2 − p2 − q2) 0 0

0 (2pq − p− q) (p2q + pq2 − p2 − q2) 0

0 (p2 + q2 − p− q) pq(p+ q − 2) 0

0 0 (p2 + q2 − p− q) pq(p+ q − 2)

∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1) · q · (q − 1) · p · (p− 1) · (p+ q) · (p+ q − 2) · (−p+ q)2 · (2pq − p− q)

As discussed in Section 2.2 We assumed 0, 1, p, q are all distinct and therefore p, q, (q− 1),

(p− 1), (−p+ q) are all non-zero. Together with the conditions (*), the resultant of φ is not

0. Therefore the numerator and denominator of φ do not have a common root. Since φ is of

degree two, it is quadratic.

Now suppose that there is a quadratic rational map with fixed points 0, 1, ∞ and p, q as

a distinct two cycle.

As discussed in Section 2.4, such a map must take the form:

φ(x) =
a2x

2 + a1x

b1x+ b0
such that a2, b0 �= 0 and a2 + a1 = b1 + b0.

We will refer to 0 = a2 + a1 − b1 − b0 as the φ(1) equation. By definition, since 1 and 0 are

fixed points, they are not period 2 points. We want to show that the values p, q satisfy the

conditions (*). For the three conditions we will use a proof by contradiction. We will assume

that φ(x) is a quadratic rational map and one of the conditions is not met, then show that

a2 = 0 or b0 = 0. This causes φ(x) to reduce to a degree 1, non-quadratic map; creating a

contradiction.

Case 1. Suppose p+ q = 0.

Since φ(p) = q = −p and φ(q) = φ(−p) = p, the following equations are established.

φ(p) = −p = a2p
2 + a1p

b1p+ b0
⇒ 0 = a2p

2 + a1p− (−p)(b1p+ b0)

φ(−p) = p =
a2p

2 + a1(−p)
b1(−p) + b0

⇒ 0 = a2(p)
2 + a1(−p)− p(b1(−p) + b0)

By adding the φ(p) and φ(−p) equations we find that

0 = 2p2(a2 + b1).

Since p �= 0 then a2 = −b1.
By subtracting the φ(p) and φ(−p) equations we find that

0 = 2p(a1 + b0).
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Since p �= 0 then a1 = −b0.
When we substitute these into the φ(1) equation we find that b1 = −b0.
Finally substituting for a2, a1, b1 into the φ(p) equation it shows

0 = −1 · p · (p− 1)b0.

Since p, 0, and 1 are assumed to be distinct; p, (p− 1) �= 0. Therefore b0 = 0.

Case 2. Suppose p+ q − 2 = 0.

Since φ(p) = q = 2− p and φ(q) = φ(2− p) = p, the following equations are established.

φ(p) = 2− p =
a2p

2 + a1p

b1p+ b0
⇒ 0 = a2p

2 + a1p− (2− p)(b1p+ b0)

φ(2− p) = p =
a2(2− p)2 + a1(2− p)

b1(2− p) + b0
⇒ 0 = a2(2− p)2 + a1(2− p)− p(b1(2− p) + b0)

When subtracting the φ(p) from the φ(2− p) equation we find that

b0 = −1 · (2a2 + a1).

When substituting b0 into the φ(1) equation we find the equation

b1 = 3a2 + 2a1.

When b1, b0 are substituted back into the φ(p) equation we find that

0 = (4a2 + 2a1)(p− 1)2.

Since p �= 1 then 0 = 4a2+2a1. Thus a1 = −2a2. When this is substituted in the b0 equation

b0 = −1 · (2a2 + a1) = −1 · (2a2 − 2a2) = 0.

Case 3. Suppose 2pq − p− q = 0.

Since φ(p) = q = p
2p−1 and φ(q) = φ( p

2p−1) = p, the following equations are established.

φ(p) =
p

2p− 1
=
a2p

2 + a1p

b1p+ b0
⇒ p(b1p+ b0) = (2p− 1)(a2p

2 + a1p)

φ(p) : 0 = −2a2p3 + a2p
2 − 2a1p

2 + b1p
2 + a1p+ b0p
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φ(
p

2p− 1
) = p =

a2(
p

2p−1)
2 + a1(

p
2p−1)

b1(
p

2p−1) + b0
⇒ p(b1(2p− 1) + b0(2p− 1)2) = a2p

2 + a1p(2p− 1)

φ(
p

2p− 1
) : 0 = −2b1p3 − 4b0p

3 + a2p
2 + 2a1p

2 + b1p
2 + 4b0p

2 − a1p− b0p.

By adding the φ(p) and φ( p
2p−1) equations together we find that

0 = 2 · (p− 1)(a2 + b1 + 2b0).

Since p �= 1 then 0 = (a2 + b1 + 2b0). Therefore a2 = −2b0 − b1.

When this is substituted into the φ(p) equation we find that

a1 = 2b1 + 3b0.

When substituting a2, a1 into the φ( p
2p−1) equation, we find that

0 = 2p(p− 1)2(b1 + 2b0).

Since p, (p − 1) �= 0 then 2b0 + b1 = 0. Therefore b1 = −2b0. This leads to the conclusion

that

a2 = −2b0 − b1 = −2b0 + 2b0 = 0.

We have shown that if each condition is not met, then φ(x) cannot be a quadratic rational

map.

Therefore the forward and backward conditionals of the theorem have been proven.

3.2. Geometric Explanation of Existence Theorem Conditions

The proof highlights the algebraic reasoning for the conditions on a rational map; this

section addresses the geometric reasoning. Here again is the resultant of the rational map φ

described in the proof.

Res(φ(x)) = (−1) · q · (q − 1) · p · (p− 1) · (−p+ q)2 · (p+ q) · (p+ q − 2) · (2pq − p− q)

We are concerned with conditions that cause the resultant to be zero, so the leading -1 is

irrelevant. The next four terms are addressed by the condition “distinct two-cycle” for the

rational map. The factors q, (q− 1), p, (p− 1) ensure that the fixed points of 0 and 1 are not
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also considered part of the two cycle. The next factor (−p+ q) ensures that the period two

points are not the same, thus becoming a fixed point.

The final three terms are more interesting. Consider what happens to the map when

these terms are set equal to 0:

φ(x) =
(2pq − p− q)x2 − (p2q + pq2 − p2 − q2)x

(p2 + q2 − p− q)x− pq(p+ q − 2)

0 = (p+ q − 2)⇒ q = 2− p⇒ φ(x) = 2− x⇒ φ(0) = 2

0 = (p+ q)⇒ q = −p⇒ φ(x) = −x⇒ φ(1) = −1

0 = (2pq − p− q)⇒ q =
p

2p− 1
⇒ φ(x) =

x

2x− 1
⇒ φ(∞) =

1

2

Even though no longer quadratic, each two cycle is preserved. The trade off is that one

of the fixed points disappears; leaving each map to be degree one with two fixed points and

a two-cycle.
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4. Uniqueness

4.1. Basics of Gröbner Bases

In our research we found a need to solve non-trivial systems of polynomial equations. In

order to do so with the computer algebra system Sage, we used Gröbner bases. This section

is focused on explaining the nature of Gröbner basis, first created by Bruno Buchberger and

named after his advisor, Wolfgang Gröbner.

Our difficulties began with a system of equations that arise in our proof of a quadratic

rational map’s uniqueness. These equations may be organized into a set of polynomials with

rational coefficients.

Definition 4.1. Let F be a finite set of polynomials in a polynomial ring R. Let I be the

set of linear combinations of elements from F with coefficients in all of R. I is known as the

ideal generated by F .

Example. Over the course of this section, we will refer to I to illustrate the theory.

I = 〈k1, k2〉 = 〈x3 − 2xy, x2y − 2y2 + x〉

= {(x3 − 2xy)f(x, y) + (x2y − 2y2 + x)g(x, y)}

Definition 4.2. Given an ideal I = 〈k1, k2, . . . kn〉, the polynomials kn are called the gener-

ators of the ideal.

Ideals have many generating sets; a Gröbner basis is a certain type of generating set that

facilitates solving systems of polynomial equations.

Important to the process of developing a Gröbner basis is the concept of monomial

ordering ; the way by which the the monomials are ordered within the polynomial ring. There

are several types of ordering. One example of an ordering is degree lexicographic; this means

the terms are listed in descending degree then alphabetical order. This ordering is often

shortened to deglex. In our proof of Theorem 5 we use total degree reverse lexicographical

ordering (also known as degrevlex ) by which terms are listed in descending total degree then

reverse ordered by the exponent of the last lexicographic term. Below is a comparison of the

two types of monomial orderings applied to I.

deglex: I = 〈x3 − 2xy, x2y − 2y2 + x〉
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degrevlex: I = 〈x3 − 2xy, x2y − 2y2 + x〉

You can see that the two polynomials remain the same.

Consider the following example ideal J , here the two monomial orderings do change the

arrangement of the polynomials.

deglex: J = 〈x4yz2, xy5z + x2yz3 + xy4z〉

degrevlex: J = 〈xy5z + xy4z + x2yz3, x4yz2〉

Interesting to note is that different choices of ordering ordering used for Buchberger’s

algorithm for constructing a Gröbner basis can result in different sizes of bases. For the

proof of Theorem 5, the Gröbner basis contains 14 polynomials if calculations are started

with a degrevlex ordering (Appendix A), but 35 polynomials if started with a lexicographic

ordering. Thus we use the former for the sake of tractability.

Definition 4.3. The leading term of a polynomial k is the largest monomial term in the

polynomial. This is dependent upon the choice of monomial ordering of the polynomial ring.

This is denoted LT(k).

The philosophy behind creating the Gröbner basis of an ideal is to eliminate variables.

The ordering of the Gröbner basis determines the sequence of eliminating these variables.

Referring to our example above, LT(k1)=x
3 in both deglex and degrevlex orderings.

Definition 4.4. Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal I is said

to be a Gröbner Basis if

〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.

The word “basis” in Gröbner basis is a slight misnomer because the set of generators in

a Gröbner basis need not be reduced to the minimum number of elements. For example,

y(x3 − 2xy)− x(x2y − 2y2 + x) = −x2 and thus −x2 ∈ I using the generators k1, k2; but we

will see later that −x2 is included among the generators of the Gröbner basis of I.
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Figure 1: The graph of the the two polynomial equations.

4.2. Gröbner Basis Example

To illustrate the use of Gröbner bases, we will use an example. This will show how

computing a Gröbner basis can be used to solve a system of polynomial equations.. The

same concepts are used in the proof of Theorem 5.

Consider the system of two equations:

x3 − 2xy = 0

x2y − 2y2 + x = 0

A solution to this system is a value of x and y simultaneously solving both equations.

Visually this corresponds to the point of intersection in the graph. We can use a Gröbner

basis to solve the system of two equations. Any (x, y) that is a solution to the original system

wil also satisfy f(x, y) = 0 for any other f ∈ I.
Here we will use what is called Buchberger’s Algorithm in order to find the the Gröbner

basis of I [2]. This is a process of developing S-polynomials of generators, dividing the S-

polynomials by the working set of polynomials, and adding the remainders to the working

set until the set is Gröbner basis.

First we need a definition of the S-polynomial.

Definition 4.5. The S-polynomial of k and g is the combination

S(k, g) =
r

LT(k)
· k − r

LT(g)
· g,
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where r is the least common multiple of LT(k) and LT(g), therefore both r
LT(k)

and r
LT(g)

are

both monomials in the polynomial ring.

First we will compute the S-polynomial of k1 and k2 in our example above.

S(k1, k2) =
x3y

x3
· (x3 − 2xy)− x3y

x2y
· (x2y − 2y2 + x) = −x2

You can see that −x2 is not divisible by LT(k1) or LT(k2). For the basis K = {k1, k2} the

remainder of the S-polynomial after division by K (denoted by S(k1, k2)
K
) is the same as

the S-polynomial:

S(k1, k2)
K
= −x2.

Therefore K = {k1, k2} is not a Gröbner basis, as −x2 ∈ I, but x2 /∈ 〈LT(k1),LT(k2)〉 =
〈x3, x2y〉. Therefore we will add −x2 to K and denote it by k3 = −x2; K = {k1, k2, k3}.
Now the remainder of the S-polynomial is zero among the basis K.

S(k1, k2)
K
= 0

Definition 4.6. A generating set K = (k1, k2, . . . kn) is closed if

S(ki, kj)
K
= 0 for all 1 ≤ i ≤ j ≤ n.

We will continue this process of generating the S-polynomials from pairs of polynomials

in our basis, and adding the remainders to the basis as necessary, until the basis is closed.

Once closed, a generating set is considered a Gröbner basis. This qualification is also known

as Buchberger’s criterion. [2]

S(k1, k3) = (x3 − 2xy)− (−x)(−x2) = −2xy

S(k1, k3)
K
= −2xy

k4 = −2xy

K = {k1, k2, k3, k4) = {x3 − 2xy, x2y − 2y2 + x,−x2,−2xy}

S(k1, k4) = y(x3 − 2xy)− (
−x2
2

)(−2xy) = −2xy2 = yk4 → S(k1, k4)
K
= 0

S(k2, k3) = (x2y − 2y2 + x)− (−y)(−x2) = −2y2 + x
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S(k2, k3)
K
= −2y2 + x

k5 = −2y2 + x

K = {k1, k2, k3, k4, k5} = {x3 − 2xy, x2y − 2y2 + x,−x2,−2xy,−2y2 + x}

S(k1, k5) = −2y3(x3 − 2xy)− x3(−2y2 + x) = −x4 + xy3 = −k23 + yk24 → S(k1, k5)
K
= 0

S(k2, k4) = −2(x2y − 2y2)− x(−2xy) = 4y2 − 2x = −2k5 → S(k2, k4)
K
= 0

S(k2, k5) = −2y(x2y−2y2)−x2(−2y2+x) = −x3+4y3−2xy = xk3−2yk5 → S(k2, k5)
K
= 0

S(k3, k4) = 2y(−x2)− x(−2xy) = 0→ S(k3, k4)
K
= 0

S(k3, k5) = 2y2(−x2)− x(−2y2 + x) = −x3 = xk3 → S(k3, k5)
K
= 0

S(k3, k4) = y(−2xy)− x(−2y2 + x) = −x2 = k3 → S(k4, k5)
K
= 0

We have shown that K is closed.

S(ki, kj)
K
= 0 for all 1 ≤ i ≤ j ≤ 5.

Thus K is the Gröbner basis for the ideal I.

Theorem 4. Buchberger’s Algorithm terminates.

Proof. See [2].

Theorem 4 Gröbner bases always exist for any ideal starting with a generating subset. In

general, the Gröbner basis is a large generating of simpler polynomials we can use to solve

for the variables in the system of polynomial equations.

Since the Gröbner basis generates the ideal I, a solution to the system of equations,

k1 = 0

k2 = 0

k3 = 0

k4 = 0

k5 = 0
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will be a solution to the original system. Now we can use K to solve the original system of

equations. First we will begin with the lowest order term of K and form an equation equal

to zero.

0 = −2y2 + x⇒ x = 2y2

Now we will substitute this relation into the polynomial of the basis of next highest order.

0 = −2xy ⇒ 0 = −2(2y2)y ⇒ y = 0

Thus we can also conclude that x = 0, solving our system of equations. Referring back to

the graph earlier in this section, you can see that the two curves intersect at the point (0,0).

4.3. Applying the Gröbner basis to our Proof

In our case this allows us to solve for the coefficients of the quadratic rational map. For

the proof of Theorem 5 we use a Gröbner Basis to solve the system of equations:

a32 − a2b
2
1 − 1 = 0

a1a
2
2 + a1a2b1 − a2b0b1 − a1b

2
1 − b0b

2
1 + p+ q + 1 = 0

a21a2 + a1a2b0 + a21b1 − a1b0b1 − 2 b20b1 − pq − p− q = 0

a21b0 − b30 + pq = 0

a2 + a1 − b1 − b0 = 0

Note in this case a2, a1, b1, b0 are the variables and p, q are the constraints in the polynomial

ring.

We form an ideal J = 〈a32 − a2b
2
1 − 1, a1a22 + a1a2b1 − a2b0b1 − a1b

2
1 − b0b

2
1 + p+ q + 1,

a21a2 + a1a2b0 + a21b1 − a1b0b1 − 2 b20b1 − pq − p− q, a21b0 − b30 + pq, a2 + a1 − b1 − b0〉 from the

equations and then form the Gröbner basis relative to a degrevlex ordering (see A). From

this Gröbner basis we form a set of equations and solve it for the coefficients a2, a1, b1, and

b0 in terms of p and q.
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4.4. Uniqueness Theorem

Theorem 5. Let p, q be distinct rational numbers. If φ is a quadratic rational map with

fixed points 0,1, ∞ and p, q as a distinct two cycle, then φ is unique.

The purpose of this proof is to solve for a2, a1, b1, b0 in terms of p, q therefore showing

that they are each unique at the choice of p, q. We solve for a2, a1, b1, b0 by using the fixed

point polynomials of the general second iterate of a quadratic map and the second iterate

of a quadratic map with our fixed points. The fixed point polynomials establish equations

in terms of a2, a1, b1, b0 and rational numbers. These equations, along with the equation

obtained by requiring 1 to be a fixed point, form an ideal whose Gröbner Basis may be used

to solve for the coefficients of φ(x).

Proof. We showed before that general form of a quadratic rational map fixed points 0,1,∞ is

φ(x) =
a2x

2 + a1x

b1x+ b0
such that a2, b0 �= 0 and a2 + a1 = b1 + b0

We will refer to 0 = a2 + a1 − b1 − b0 as the “φ(1) equation”.

The second iterate of φ is φ(φ(x)), given by

φ(φ(x)) =
a2(

a2x2+a1x
b1x+b0

)2 + a1(
a2x2+a1x
b1x+b0

)

b1(
a2x2+a1x
b1x+b0

) + b0

=
a32x

4 + 2 a1a
2
2x

3 + a1a2b1x
3 + a21a2x

2 + a1a2b0x
2 + a21b1x

2 + a21b0x

a2b21x
3 + a2b0b1x2 + a1b21x

2 + b0b21x
2 + a1b0b1x+ 2 b20b1x+ b30

.

The second iterate of φ will maintain the fixed points 0, 1, ∞. Also the period two points

p, q, will be become fixed points.

φ(φ(0)) = φ(0) = 0

φ(φ(p)) = φ(q) = p

The fixed point polynomial of φ2 is

0 = a32x
4 − a2b

2
1x

4 + 2 a1a
2
2x

3 + a1a2b1x
3 − a2b0b1x

3 − a1b
2
1x

3 − b0b
2
1x

3

+a21a2x
2 + a1a2b0x

2 + a21b1x
2 − a1b0b1x

2 − 2 b20b1x
2 + a21b0x− b30x.
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In our case, the fixed point polynomial has zeros: 0, 1, ∞, p, q.

0 = 1 · x(x− 1)(x− p)(x− q) = x4 − px3 − qx3 − x3 + pqx2 + px2 + qx2 − pqx

Notice that (x−∞) does not appear. This is not an algebraically viable term. In order to

ensure that ∞ is a fixed point, the degree of the numerator of φ is less than the degree of

the denominator. This is achieved by ensuring that b2 = 0 and a2 �= 0.

Subtracting our case from the general case, the coefficients of like terms can be combined.

0 = a32x
4 − a2b

2
1x

4 + 2 a1a
2
2x

3 + a1a2b1x
3 − a2b0b1x

3 − a1b
2
1x

3 − b0b
2
1x

3

+a21a2x
2 + a1a2b0x

2 + a21b1x
2 − a1b0b1x

2 − 2 b20b1x
2 + a21b0x− b30x

−(x4 − px3 − qx3 − x3 + pqx2 + px2 + qx2 − pqx)

x4: a32 − a2b
2
1 − 1 = 0

x3 : 2 a1a
2
2 + a1a2b1 − a2b0b1 − a1b

2
1 − b0b

2
1 + p+ q + 1 = 0

x2 : a21a2 + a1a2b0 + a21b1 − a1b0b1 − 2 b20b1 − pq − p− q = 0

x : a21b0 − b30 + pq = 0

With the four polynomials and the φ(1) condition, we form an ideal, J , in the ring of

rational polynomials with a2, a1, b1, and b0. We used Sage computer program to find the

Gröbner Basis of J . From the Gröbner Basis (see Appendix A), the following equations are

established:

a1 + a2 − b0 − b1 = 0

a2p+ a2q − a2 + 2b0 + b1 = 0

b1pq − a2q
2 + b0p+ a2q − b0q − b1q = 0

From these equations the following series of dependent equations can be made.

b0 =
a2pq(p+ q − 2)

−2pq + p+ q

b1 = −a2(p+ q − 1)− 2b0

a1 = −a2 + b0 + b1
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Then when simplified all in terms of a2

b0 =
a2pq(p+ q − 2)

−2pq + p+ q

b1 = −a2(p+ q − 1)− 2a2pq(p+ q − 2)

−2pq + p+ q

a1 = −a2 − a2pq(p+ q − 2)

−2pq + p+ q
− a2(p+ q − 1)

When substituted into the general form of a quadratic rational map, refer to Theorem 3 to

know that p+ q �= 0, p+ q − 2 �= 0, 2pq − p− q �= 0. Also note that a2 �= 0.

φ(x) =
a2x

2 + a1x

b1x+ b0
=

(2pq − p− q)x2 − (p2q + pq2 − p2 − q2)x

(p2 + q2 − p− q)x− pq(p+ q − 2)

Thus φ(x) is determined unique to the two cycle p, q.

5. General Case

5.1. Möbius Transformation

To expand our conclusions to any set of fixed points within conditions (*) from Theorem

3, we use Möbius Transformations. Below is the general form of a Möbius Transformation,

and its inverse, that shifts the fixed points of the map to 0, 1, and ∞.

μ(x) =
(x− f1)(f2 − f3)

(x− f3)(f2 − f1)

f1 → 0

f2 → 1

f3 →∞

μ−1(x) =
f1(f2 − f3)− f3x(f2 − f1)

f2 − f3 − x(f2 − f1)

f1 ← 0

f2 ← 1

f3 ←∞
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Corollary 5.1. Let p, q be distinct rational numbers. There is a unique quadratic rational

map with fixed points f1,f2,f3 and p, q as a distinct two cycle if and only if p, q satisfy the

following conditions:

−2f2f3 + f2p + f3p + f2q + f3q − 2pq �= 0, −2f1f3 + f1p + f3p + f1q + f3q − 2pq �= 0,

−2f1f2 + f1p+ f2p+ f1q + f2q − 2pq �= 0

Proof. There is a Möbius Transformation μ transforming f1,f2,f3 to 0, 1, ∞.

μ(x) =
(x− f1)(f2 − f3)

(x− f3)(f2 − f1)

μ−1(x) =
f1(f2 − f3)− f3x(f2 − f1)

f2 − f3 − x(f2 − f1)

This same μ also transforms transforms p, q such that: μ(p)+μ(q) �= 0, μ(p)+μ(q)− 2 �= 0,

2 · μ(p) · μ(q) − μ(p) − μ(q) �= 0 . Once transformed, we can develop a unique quadratic

rational map, as shown by Theorem 3 and Theorem 5. Then μ−1 ◦ φ ◦ μ is the quadratic

rational map with fixed points f1,f2,f3 and p, q as a distinct two cycle.

See Appendix B for the general form of a quadratic rational map with fixed points f1,f2,f3

and p, q as a distinct two cycle.
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6. Affine Bijection into Moduli 2-space

Modulized spaces are used in algebraic geometry in order to translate algebraic structures,

such as rational maps, into geometric structures, such as curves. The moduli 2-space, M2,

can further be bijected into the affine plane. This provides a way by which to understand the

relationships between separate maps. Via this bijection the algebraic structures correspond

to single points in the two-dimensional plane. This space is described by Silverman in

Chapter 4.4 of “The Arithmetic of Dynamical Systems.”[3] Our work in this paper can be

used to understand how these points relate to changes in fixed and period two points.

6.1. Understanding the Affine Bijection

For a proof of the isomorphism of the moduli 2-space to the affine plane, M2
∼−→ A2, see

Silverman’s paper “The Space of Rational Maps on P1”[4]. The isomorphism is constructed

using spectra dependent on multipliers. These multipliers are related to the fixed points of

a quadratic rational map.

Definition 6.1. If α is a fixed point of a rational map φ, then the multiplier of φ at α is

the derivative

λα(φ) = φ′(α) .

Definition 6.2. The spectra σi(φ) is the i
th elementary symmetric polynomial of the mul-

tipliers λα1(φ), · · · , λαd+1
(φ). The value d is the degree of the map φ.

For the scope of this paper, we are concerned with the bijecion of quadratic rational maps

into this space.

φ
∼−→ (σ1(φ), σ2(φ)) ∈ A2

For a quadratic rational map, there are three fixed points and thus three multipliers.

λα1(φ) = φ′(α1), λα2(φ) = φ′(α2), λα3(φ) = φ′(α3)

These are used to construct the spectra.

σ1(φ) = λα1(φ) + λα2(φ) + λα3(φ)

σ2(φ) = λα1(φ)λα2(φ) + λα2(φ)λα3(φ) + λα2(φ)λα3(φ)
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6.2. Constructing Points in the Affine Plane

Continuing the trend of this paper, we will explain how this relates to a quadratic rational

map with 0, 1, ∞ as fixed points.

Recall the form of a quadratic rational map with 0, 1, ∞ as fixed points and p, q for

distinct two cycle.

φ(x) =
(2pq − p− q)x2 − (p2q + pq2 − p2 − q2)x

(p2 + q2 − p− q)x− pq(p+ q − 2)

The multipliers of the rational map are:

λ0(φ) =
p2q + pq2 − p2 − q2

p2q + pq2 − 2 pq

λ1(φ) =
p2q + pq2 − p2 − 4 pq − q2 + 2 p+ 2 q

p2q + pq2 − p2 − 2 pq − q2 + p+ q
+

p2 + q2 − p− q

p2q + pq2 − p2 − 2 pq − q2 + p+ q
.

To compute the multiplier at∞, we change coordinates to z = 1
x
and compute the multiplier

at z = 0. This leads to the equation

λ∞(φ) = lim
z→ 0

z−2φ(z−1)
φ(z−1)2

=
p2 + q2 − p− q

2pq − p− q
.

Therefore a quadratic rational map with 0, 1, ∞ as fixed points and p, q for distinct two

cycle may be sent to the affine plane with the isomorphism:

M2
∼−→ A2

(2pq − p− q)x2 − (p2q + pq2 − p2 − q2)x

(p2 + q2 − p− q)x− pq(p+ q − 2)
∼−→

(p
2q+pq2−p2−4 pq−q2+2 p+2 q
p2q+pq2−p2−2 pq−q2+p+q + p2q+pq2−p2−q2

p2q+pq2−2 pq + p2+q2−p−q
p2q+pq2−p2−2 pq−q2+p+q +

p2+q2−p−q
2 pq−p−q ,

2 (p2q+pq2−p2−q2)
(

p2q+pq2−p2−4 pq−q2+2 p+2 q

p2q+pq2−p2−2 pq−q2+p+q
+ p2+q2−p−q

p2q+pq2−p2−2 pq−q2+p+q

)

p2q+pq2−2 pq +
(p2+q2−p−q)

(
p2q+pq2−p2−4 pq−q2+2 p+2 q

p2q+pq2−p2−2 pq−q2+p+q
+ p2+q2−p−q

p2q+pq2−p2−2 pq−q2+p+q

)

2 pq−p−q ).

As you can see, the algebra becomes increasingly complicated. Due to the complexity of the

general form with f1, f2, f3 as fixed points, it is easier to take the derivative of the specific

map you intend to work with to generate the multipliers and the spectra rather than provide

general forms.
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7. Example of Quadratic Rational Map with Two-Cycle

To bring the concepts of this paper together, we will work through an example. Let us

construct the unique quadratic rational map with fixed points at 1, 2, and 3 and a two cycle

of 4 � 5.

Let’s begin by making sure this is possible. Refer to the conditions of Corollary 5.1.

−2f2f3 + f2p+ f3p+ f2q + f3q − 2pq �= 0⇒ −7 �= 0

−2f1f3 + f1p+ f3p+ f1q + f3q − 2pq �= 0⇒ −10 �= 0

−2f1f2 + f1p+ f2p+ f1q + f2q − 2pq �= 0⇒ −17 �= 0

All the conditions are met. If we hold 1,2,3 as fixed points and 4 as a period 2 point, then

the second period 2 point cannot be 8
3
, 5
2
, or 8

5
; none of which are 5. Therefore we know there

exists a unique quadratic rational map with fixed points at 1, 2, and 3 and a two cycle of 4

� 5.

Geometrically this may be visualized as constructing a curve from a quadratic function

that travels through the points (1,1), (2,2), (3,3), (4,5) and (5,4).

We begin construction by bringing shifting the fixed points to 0,1, and∞ with a Möbius

Transformation.

μ(x) =
1− x

x− 3

x→ μ(x)

1→ 0
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2→ 1

3→∞
4→ −3
5→ −2

Now our visualization is shifted. We are constructing a curve that travels through the

points (0,0), (1,1), the point at infinity, (-2, -3), and (-2,-3).

From here we can construct the quadratic rational map using the general form from

Theorem 3.

(μ(p), μ(q)) = (−3,−2)

φ(x) =
17x2 + 43x

18x+ 42

Now we need to bring the map back to the original space. We will need the inverse

Möbius Transformation.

μ−1(x) =
1 + 3x

1 + x
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x← μ−1(x)

1← 0

2← 1

3←∞
4← −3
5← −2

We can apply this to the map as a whole to bring it back to the original space.

μ−1(φ(x)) =
3 (9x2 − 39 x+ 2)

x2 + 21 x− 106

φ(1) = 1

φ(2) = 2

φ(3) = 3

φ(4) = 5

φ(5) = 4

There is our unique quadratic rational map with fixed points at 1, 2, and 3 and a two

cycle of 4 � 5.

The point determined in the moduli space is then:

M2
∼−→ A2

3 (9 x2 − 39 x+ 2)

x2 + 21 x− 106

∼−→
(
7297

2380
,
134173

42840

)
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8. Future Work

Definition 8.1. An elliptic curve E(C) is the set of solutions (x, y) to an equation of the

form

y2 = x3 + ax+ b

together with an identity element O. Also, it is required that 4a3 + 27b2 �= 0 which means

that the cubic polynomial has distinct roots and ensures that the curve E(C) is nonsingular.

Recently, the study of elliptic curves has grown to prominence due to their use in cryp-

tography. Elliptic curve cyptography (ECC) is a public-key crypto-system with a smaller

key length than other systems such as RSA; thereby reducing storage and transmission re-

quirements without sacrificing security. Minimizing storage leads to increased speed and the

freeing of memory towards other utility. In the end, this improves performance and saves

money.

Elliptic curves are special among algebraic curves because they have a group law, i.e.

a way of adding points on the curve to get another point on the curve. The group law of

elliptic curves is under the operation ⊕ with identity point O [3]. By this group law, special

points, known as torsion points, points develop order. The order of a point is determined by

the smallest integer such that nP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n

= 0.

Definition 8.2. A point P ∈ E is called a torsion point of order n if P has order n.

Thus you can begin to see the analogous structure of the periodic points on a rational

map and the torsion points of an elliptic curve. Joseph Silverman noted the connection be-

tween these two structures in his book “Arithmetic of Dynamical Systems” [3], specifically

between the subset of rational maps known as Lattès maps and elliptic curves.

Definition 8.3. A rational map φ : P1 → P1 of degree d ≥ 2 is called a Lattès map if there

is an elliptic curve E, a morphism ψ : E → E, and a finite separable covering π : E → P1

such that the following diagram is commutative.

E
ψ−→ E
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↓π −− ↓π

P1 φ−→ P1

For example, let E : y2 = x3 + ax+ b be an elliptic curve. Let ψ be the duplication map

such that ψ(P ) = P ⊕ P = 2P and π(P ) = π(x, y) = x. Then the related Lattès map is [3]

φE(x) =
x4 − 2ax2 − 8bx+ a2

4x3 + 4ax+ 4b
.

When maps have higher degree than two, they develop a larger set of interesting points

which encompasses fixed and periodic points. This larger set is the map’s pre-periodic points.

Definition 8.4. Let α be a point on the projective line P1 and let n and m be distinct

integers such that

φm(α) = φn(α)

The point α is known as a pre-periodic point, denoted PrePer(φ). Note that all periodic

points are pre-periodic points.

It is in these points that Silverman proved the connection of rational maps to elliptic

curves.

Theorem 6. Let φ be a Lattès map associated to an elliptic curve E. Then

PrePer(φ) = π(Etor)

It is this connection that our research seeks to exploit.

Our current work capitalizes upon simpler calculations in the space of quadratic rational

maps with fixed points 0, 1,∞ than the space of elliptic curves. We then transform our

construction to the desired space of fixed points f1, f2, f3. We can do this by exploiting the

fact that Möbius transformations exists between any three distinct triples.

Future work would use an analogous bait and switch. We would work in the space of

Lattès maps with certain pre-periodic points. We would then transform our construction to

the desired space of elliptic curves with certain torsion points. We do this by exploiting the

above theorem by Silverman.

This algorithm of construction could then be an asset for generating new keys in elliptic

curve cryptography.
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A. Gröbner Basis of the Ideal
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B. Proof of Corollary without Transformation

Let f1,f2,f3, p and q be distinct rational numbers.

Let S = { (f1−f2)f3p−f1f2+f1f3
(f1−f2)p−f2+f3 , (f1−f2)f3(p−2)−f1f2+f1f3

(f1−f2)(p−2)−f2+f3 ,
f1f2−f1f3+ (f1−f2)f3p

2 p−1

f2−f3+ (f1−f2)p
2 p−1

}.
Given any 3 fixed points (f1,f2,f3) and any other pair of points (p,q) such that

q /∈ S , there is exactly 1 rational map with the 3 fixed points and with the

other pair of points forming a two-cycle.

Proof. The map is given by:

φ(x) = (f1f2f3p
2−2 f1f2f3pq+f1f2f3q

2+f1f2f3px−f1f2p2x−f1f3p2x−f2f3p2x+f1f2f3qx+
f1p

2qx+f2p
2qx+f3p

2qx−f1f2q2x−f1f3q2x−f2f3q2x+f1pq2x+f2pq2x+f3pq2x−2 p2q2x−
2 f1f2f3x

2+f1f2px
2+f1f3px

2+f2f3px
2+f1f2qx

2+f1f3qx
2+f2f3qx

2−2 f1pqx
2−2 f2pqx

2−
2 f3pqx

2+p2qx2+pq2x2) · (f1f2f3p+f1f2f3q−2 f1f2pq−2 f1f3pq−2 f2f3pq+f1p
2q+f2p

2q+

f3p
2q+f1pq

2+f2pq
2+f3pq

2−2 p2q2−2 f1f2f3x+f1f2px+f1f3px+f2f3px−f1p2x−f2p2x−
f3p

2x+f1f2qx+f1f3qx+f2f3qx+p
2qx−f1q2x−f2q2x−f3q2x+pq2x+p2x2−2 pqx2+q2x2)−1

If f(f1) = f1, f(f2) = f2, f(f3) = f3, then f1,f2,f3 are fixed points.

f(f1) = (2 f 3
1 f2f3−f 3

1 f2p−f 3
1 f3p−2 f 2

1 f2f3p+f
2
1 f2p

2+f 2
1 f3p

2−f 3
1 f2q−f 3

1 f3q−2 f 2
1 f2f3q+

2 f 3
1 pq + 2 f 2

1 f2pq + 2 f 2
1 f3pq + 2 f1f2f3pq − 2 f 2

1 p
2q − f1f2p

2q − f1f3p
2q + f 2

1 f2q
2 + f 2

1 f3q
2 −

2 f 2
1 pq

2 − f1f2pq
2 − f1f3pq

2 + 2 f1p
2q2) · (2 f 2

1 f2f3 − f 2
1 f2p − f 2

1 f3p − 2 f1f2f3p + f1f2p
2 +

f1f3p
2−f 2

1 f2q−f 2
1 f3q−2 f1f2f3q+2 f 2

1 pq+2 f1f2pq+2 f1f3pq+2 f2f3pq−2 f1p
2q−f2p2q−

f3p
2q + f1f2q

2 + f1f3q
2 − 2 f1pq

2 − f2pq
2 − f3pq

2 + 2 p2q2)−1

= f1 · (2 f 2
1 f2f3 − f 2

1 f2p− f 2
1 f3p− 2 f1f2f3p+ f1f2p

2 + f1f3p
2 − f 2

1 f2q − f 2
1 f3q − 2 f1f2f3q +

2 f 2
1 pq+2 f1f2pq+2 f1f3pq+2 f2f3pq− 2 f1p

2q− f2p2q− f3p2q+ f1f2q
2 + f1f3q

2− 2 f1pq
2−

f2pq
2 − f3pq

2 + 2 p2q2) · (2 f 2
1 f2f3 − f 2

1 f2p − f 2
1 f3p − 2 f1f2f3p + f1f2p

2 + f1f3p
2 − f 2

1 f2q −
f 2
1 f3q−2 f1f2f3q+2 f 2

1 pq+2 f1f2pq+2 f1f3pq+2 f2f3pq−2 f1p
2q−f2p2q−f3p2q+f1f2q2+

f1f3q
2 − 2 f1pq

2 − f2pq
2 − f3pq

2 + 2 p2q2)−1
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= f1

f(f2) = (2 f1f
3
2 f3 − f1f

3
2 p − 2 f1f

2
2 f3p − f 3

2 f3p + f1f
2
2 p

2 + f 2
2 f3p

2 − f1f
3
2 q − 2 f1f

2
2 f3q −

f 3
2 f3q + 2 f1f

2
2 pq + 2 f 3

2 pq + 2 f1f2f3pq + 2 f 2
2 f3pq − f1f2p

2q − 2 f 2
2 p

2q − f2f3p
2q + f1f

2
2 q

2 +

f 2
2 f3q

2 − f1f2pq
2 − 2 f 2

2 pq
2 − f2f3pq

2 + 2 f2p
2q2) · (2 f1f 2

2 f3 − f1f
2
2 p − 2 f1f2f3p − f 2

2 f3p +

f1f2p
2+ f2f3p

2− f1f 2
2 q−2 f1f2f3q− f 2

2 f3q+2 f1f2pq+2 f 2
2 pq+2 f1f3pq+2 f2f3pq− f1p2q−

2 f2p
2q − f3p

2q + f1f2q
2 + f2f3q

2 − f1pq
2 − 2 f2pq

2 − f3pq
2 + 2 p2q2)1

= f2 · (2 f1f 2
2 f3 − f1f 2

2 p− 2 f1f2f3p− f 2
2 f3p+ f1f2p

2 + f2f3p
2 − f1f 2

2 q − 2 f1f2f3q − f 2
2 f3q +

2 f1f2pq + 2 f 2
2 pq + 2 f1f3pq + 2 f2f3pq − f1p2q − 2 f2p

2q − f3p2q + f1f2q
2 + f2f3q

2 − f1pq2 −
2 f2pq

2 − f3pq
2 + 2 p2q2) · (2 f1f 2

2 f3 − f1f
2
2 p− 2 f1f2f3p− f 2

2 f3p+ f1f2p
2 + f2f3p

2 − f1f
2
2 q −

2 f1f2f3q−f 2
2 f3q+2 f1f2pq+2 f 2

2 pq+2 f1f3pq+2 f2f3pq−f1p2q−2 f2p
2q−f3p2q+f1f2q2+

f2f3q
2 − f1pq

2 − 2 f2pq
2 − f3pq

2 + 2 p2q2)−1

=f2

f(f3) = (2 f1f2f
3
3 − 2 f1f2f

2
3 p − f1f

3
3 p − f2f

3
3 p + f1f

2
3 p

2 + f2f
2
3 p

2 − 2 f1f2f
2
3 q − f1f

3
3 q −

f2f
3
3 q + 2 f1f2f3pq + 2 f1f

2
3 pq + 2 f2f

2
3 pq + 2 f 3

3 pq − f1f3p
2q − f2f3p

2q − 2 f 2
3 p

2q + f1f
2
3 q

2 +

f2f
2
3 q

2 − f1f3pq
2 − f2f3pq

2 − 2 f 2
3 pq

2 + 2 f3p
2q2) · (2 f1f2f 2

3 − 2 f1f2f3p − f1f
2
3 p − f2f

2
3 p +

f1f3p
2+ f2f3p

2−2 f1f2f3q− f1f 2
3 q− f2f 2

3 q+2 f1f2pq+2 f1f3pq+2 f2f3pq+2 f 2
3 pq− f1p2q−

f2p
2q − 2 f3p

2q + f1f3q
2 + f2f3q

2 − f1pq
2 − f2pq

2 − 2 f3pq
2 + 2 p2q2)1

= f3 · (2 f1f2f 2
3 − 2 f1f2f3p− f1f 2

3 p− f2f 2
3 p+ f1f3p

2 + f2f3p
2 − 2 f1f2f3q − f1f 2

3 q − f2f 2
3 q +

2 f1f2pq + 2 f1f3pq + 2 f2f3pq + 2 f 2
3 pq − f1p2q − f2p2q − 2 f3p

2q + f1f3q
2 + f2f3q

2 − f1pq2 −
f2pq

2−2 f3pq
2+2 p2q2) · (2 f1f2f 2

3 −2 f1f2f3p−f1f 2
3 p−f2f 2

3 p+f1f3p
2+f2f3p

2−2 f1f2f3q−
f1f

2
3 q − f2f

2
3 q + 2 f1f2pq + 2 f1f3pq + 2 f2f3pq + 2 f 2

3 pq − f1p
2q − f2p

2q − 2 f3p
2q + f1f3q

2 +

f2f3q
2 − f1pq

2 − f2pq
2 − 2 f3pq

2 + 2 p2q2)−1
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= f3

Therefore it is shown that f1,f2,f3 are fixed points.

If f(p) = q and f(q) = p, then p, q form a two cycle.

f(p) = (f1f2f3pq− f1f2p2q− f1f3p2q− f2f3p2q+ f1p3q+ f2p3q+ f3p3q− p4q− f1f2f3q2+
f1f2pq

2+f1f3pq
2+f2f3pq

2−f1p2q2−f2p2q2−f3p2q2+p3q2) · (f1f2f3pq−f1f2p2q−f1f3p2q−
f2f3p

2q + f1p
3q + f2p

3q + f3p
3q − p4q − f1f2f3q

2 + f1f2pq
2 + f1f3pq

2 + f2f3pq
2 − f1p

2q2 −
f2p

2q2 − f3p
2q2 + p3q2)−1

= q · (f1f2f3pq − f1f2p
2q − f1f3p

2q − f2f3p
2q + f1p

3q + f2p
3q + f3p

3q − p4q − f1f2f3q
2 +

f1f2pq
2+f1f3pq

2+f2f3pq
2−f1p2q2−f2p2q2−f3p2q2+p3q2) · (f1f2f3pq−f1f2p2q−f1f3p2q−

f2f3p
2q + f1p

3q + f2p
3q + f3p

3q − p4q − f1f2f3q
2 + f1f2pq

2 + f1f3pq
2 + f2f3pq

2 − f1p
2q2 −

f2p
2q2 − f3p

2q2 + p3q2)−1

= q

f(q) = (f1f2f3p
2− f1f2f3pq− f1f2p2q− f1f3p2q− f2f3p2q+ f1f2pq2+ f1f3pq2+ f2f3pq2+

f1p
2q2 + f2p

2q2 + f3p
2q2− f1pq3− f2pq3− f3pq3− p2q3 + pq4) · (f1f2f3p− f1f2f3q− f1f2pq−

f1f3pq−f2f3pq+f1f2q2+f1f3q2+f2f3q2+f1pq2+f2pq2+f3pq2−f1q3−f2q3−f3q3−pq3+q4)−1

= p · (f1f2f3p − f1f2f3q − f1f2pq − f1f3pq − f2f3pq + f1f2q
2 + f1f3q

2 + f2f3q
2 + f1pq

2 +

f2pq
2+f3pq

2−f1q3−f2q3−f3q3−pq3+ q4) · (f1f2f3p−f1f2f3q−f1f2pq−f1f3pq−f2f3pq+
f1f2q

2 + f1f3q
2 + f2f3q

2 + f1pq
2 + f2pq

2 + f3pq
2 − f1q

3 − f2q
3 − f3q

3 − pq3 + q4)−1

= p

Thus p, q form a two-cycle for f(x).
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C. SageMath Construction Function for a Quadratic Rational Map

def affine_bijection(f1,f2,f3,p,q):

#This function will produce the affine bijection of a given rational map

#f1, f2, and f3 are the fixed points

#p, q are the two-cycle

#Note: if after the mobius transformation q=(-p)/(1-2*p), then there is

no map

#Note: if q=imt(-mt(p)/(1-2*mt(p)))=

(f1*f2 - f1*f3 + (f1 - p)*(f2 - f3)*f3/((f3 - p)*(2*(f1 - p)*(f2 - f3)/

((f1 - f2)*(f3 - p)) + 1)))/(f2 - f3 +

(f1 - p)*(f2 - f3)/((f3 - p)*(2*(f1 - p)*(f2 - f3)/

((f1 - f2)*(f3 - p)) + 1))) then there is no map

#By a mobius transformation, f1 will shift to 0, f2 will shift to 1,

and f3 will shift to infinity

z=var(’z’)

def mobius_tansformation(z1,z2,z3):

return ((z-z1)*(z2-z3))/((z-z3)*(z2-z1))

def inverse_mobius_transformation(z1,z2,z3):

return (z1*(z2-z3)-z3*z*(z2-z1))/(z2-z3-z*(z2-z1))

mt(z)=mobius_tansformation(f1,f2,f3)

imt(z)=inverse_mobius_transformation(f1,f2,f3)

p=mt(p)

q=mt(q)

#Next line is optional way of intstituting the interesting point,

the map is actually developed

#q=(-p)/(1-2*p)

#P and q are currently symbolic expressions, the need to be coerced

to rationals

p=QQ(p)

q=QQ(q)
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#p,q is the two-cylce pair, the other fixed points have been moved

to 0,1, and infinity

A.<a0,a1,a2,b0,b1,b2>=QQ[];

P.<X,Y>=ProjectiveSpace(A,1);

#H is the space of all rational maps from this projective space to itself.

H = Hom(P,P);

#After doing the algebra of the Groebner basis of the second iterate map,

the coeficients have been distilled to:

a2=-( p + q - 2*p*q)

#b0= a2*(p*q)*(p+q-2)/(p + q - 2*p*q)

#Below is b0 simplified. What this allows is to develop maps

where q=imt(-mt(p)/(1-2*mt(p)))

b0= -(p*q)*(p+q-2)

b1= -a2*(p+q-1) - 2*b0

a1= -a2 + b1 + b0

#return p and q to original values

p=imt(p)

q=imt(q)

#Create the Rational Map

P1.<X,Y>=ProjectiveSpace(QQ,1);

U=Hom(P1,P1)

#The fuction m is developed by doing the inverse mobius transformation

of the map with a2, a2, b1, b0 as the coefficients

c0=-b0*f1^2 + b0*f1*f2 + b1*f1*f2 + a1*f1*f3 - b1*f1*f3 - a1*f2*f3

- a2*f2*f3 + a2*f3^2

c1= -b1*f1^2*f2 - a1*f1^2*f3 + 2*b0*f1^2*f3 + b1*f1^2*f3 + a1*f1*f2*f3

+ 2*a2*f1*f2*f3 - 2*b0*f1*f2*f3 - b1*f1*f2*f3 - a1*f1*f3^2

- 2*a2*f1*f3^2 + b1*f1*f3^2 + a1*f2*f3^2

c2= -a2*f1^2*f2*f3 + b1*f1^2*f2*f3 + a1*f1^2*f3^2 + a2*f1^2*f3^2

- b0*f1^2*f3^2 - b1*f1^2*f3^2 - a1*f1*f2*f3^2 + b0*f1*f2*f3^2
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d0=a1*f1 - b0*f1 - a1*f2 - a2*f2 + b0*f2 + b1*f2 + a2*f3 - b1*f3

d1=-a1*f1^2 + a1*f1*f2 + 2*a2*f1*f2 - b1*f1*f2 - a1*f1*f3 - 2*a2*f1*f3

+ 2*b0*f1*f3 + b1*f1*f3 + a1*f2*f3 - 2*b0*f2*f3 - b1*f2*f3 + b1*f3^2

d2=-a2*f1^2*f2 + a1*f1^2*f3 + a2*f1^2*f3 - a1*f1*f2*f3 + b1*f1*f2*f3

- b0*f1*f3^2 - b1*f1*f3^2 + b0*f2*f3^2

m=U([((X^2)*c0+(Y*X)*c1+ (Y^2)*c2), ((X^2)*d0+ (X*Y)*d1 + (Y^2)*d2)]);

E=[[’ ’, f1, f2, f3, p, q],[’f(x)’,m(f1,1)[0]/m(f1,1)[1],

m(f2,1)[0]/m(f2,1)[1],f3,m(p,1)[0]/m(p,1)[1],m(q,1)[0]/m(q,1)[1]],

[’f(f(X))’, m(m(f1,1)[0]/m(f1,1)[1],1)[0]/m(m(f1,1)[0]/m(f1,1)[1],1)

[1], m(m(f2,1)[0]/m(f2,1)[1],1)[0]/m(m(f2,1)[0]/m(f2,1)[1],1)[1],

f3,m(m(p,1)[0]/m(p,1)[1],1)[0]/m(m(p,1)[0]/m(p,1)[1],1)[1],

m(m(q,1)[0]/m(q,1)[1],1)[0]/m(m(q,1)[0]/m(q,1)[1],1)[1]]]

#f(x) is the rational map with fixed points f1, f2, f3 and two cycle p,q

f(x)=((x^2)*c0+(x)*c1+ c2)/ ((x^2)*d0+ (x)*d1 + d2)

L1(x)=diff(f(x),x)

L2(x)=diff(f(x),x)

L3(x)=diff(f(x),x)

Sig1=L1(f1)+L2(f2)+L3(f3)

Sig2=L1(f1)*L2(f2)+L2(f2)*L3(f3)+L1(f1)*L3(f3)

return show((f1,f2,f3,p,q), ’===>’ ,f(x),

’===>’, (Sig1,Sig2)), table(E, frame=True)

affine_bijection(1,2,3,4,5)

(1, 2, 3, 4, 5) ===>
3 (9x2−39x+2)
x2+21x−106 ===>

(
7297
2380

134173
42840

)

x 1 2 3 4 5

f(x) 1 2 3 5 4

f(f(x)) 1 2 3 4 5
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